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Abstract

For the single crystal growth of an oxide, the global analysis of heat transfer in the inductively heated Czochralski

(CZ) furnace was carried out to investigate the effect of optical properties of crystal on the CZ crystal growth process.

Here, the finite volume method (FVM) was used as the radiative transfer model to solve the radiative transfer equation,

and consequently the crystal with a relatively thin optical thickness (�0.01) could be accounted for. As a result, it was

found that the melt/crystal interface becomes more convex toward the melt for a small crystal rotational Reynolds num-

ber as the optical thickness of the crystal, js, decreases, although its dependence is slight for js < 0.1. In addition, the

critical Reynolds number, at which the interface inversion occurs, decreases with the optical thickness of the crystal.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Oxide single crystals such as yttrium aluminum gar-

net, gadolinium gallium garnet and lithium niobate are

utilized as solid-state laser hosts and materials for acou-

sto-optic-electronic devices, and are commonly grown

by the Czochralski (CZ) method. For the production

of a perfect oxide single crystal by the CZ method, it

is important to acquire accurate information about the

heat transfer mechanism and then to control the heat

transfer in the CZ furnace, because the quality of the

crystal is closely related to its thermal history and the

transport phenomena in the furnace.

Oxide single crystals are not opaque to infrared radi-

ation, so the radiative heat absorption and emission in
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the crystal strongly influence the heat transfer behavior

and the shape of the melt/crystal interface during the

CZ crystal growth. For example, it is experimentally

known that the radiative heat transfer through the crys-

tal renders the interface deeply convex toward the melt

[1,2], and that the change in the absorption coefficient

of the crystal affects the growth characteristics [3,4]. Re-

cently, such influences of the radiative heat transfer in

the oxide crystal on the crystal growth behavior have

also been demonstrated numerically with the global

analysis of heat transfer [5–7].

We have also investigated the effect of radiative heat

transfer using the global model in which we can predict

the electromagnetic, flow, temperature and thermal

stress fields in the CZ furnace and the melt/crystal and

melt/gas interface shapes as well as the radiative heat

transfer in the crystal and/or melt [8,9]. Here, since the

P1 or Milne–Eddington, approximation which is not

very well adapted for optically thin materials was used
ed.
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Nomenclature

a 0 absorption coefficient (m�1)

C0
p heat capacity (Jkg�1 K�1)

D product of the unit normal vector at the sur-

face and intensity direction

e unit vector

Fjk view factor

g 0 gravitational acceleration (ms�2)

Gr Grashof number (¼ b0T 0
mg

0r03c =m
02
l )

DH 0
f latent heat of solidification (Jkg�1)

I 0 radiant intensity (Wm�2)

I ¼ I 0=r0T 04
m

J 0 irradiance (Wm�2)

J = J 0=r0T 04
m

Kj ratio of thermal conductivity ð¼ k0j=k
0
lÞ

k 0 thermal conductivity (Wm�1 K�1)

NR radiation–conduction interaction parameter

ð¼ r0T 03
mr

0
c=k

0
lÞ

n refractive index

n normal unit vector

Pe Peclet number ð¼ q0
0sC

0
psV

0
sr

0
c=k

0
lÞ

Pr Prandtl number ð¼ l0
lC

0
pl=k

0
lÞ

Q0
0 standard volumetric heat generation rate

(Wm�3)

Q0 ¼ Q0
0r

02
c =ðk0l � T 0

mÞ
q0j net heat flux due to the incident radiation on

jth boundary surface (Wm�2)

q0i;j incident radiative flux on jth boundary sur-

face (Wm�2)

qj ¼ q0j=r
0T 04

m

qi;j ¼ q0i;j=r
0T 04

m

r 0 radial position in cylindrical coordinates (m)

r ¼ r0=r0c
r0c crucible radius (m)

rs crystal radius

Re Reynolds number ð¼ r02c X0=m0lÞ
Rec critical Reynolds number

St Stefan number ð¼ DH 0
f =C

0
psT

0
mÞ

T 0 temperature (K)

T ¼ T 0=T 0
m

T 0
m melting temperature (K)

V 0
s crystal pulling rate (ms�1)

v 0 velocity vector (ms�1)

v ¼ v0r0c=m
0
l

z 0 axial position in cylindrical coordinates (m)

z ¼ z0=r0c

Dz axial displacement of the interface

Greek symbols

a heat generation coefficient

b 0 thermal expansion coefficient (K�1)

e emissivity

/ azimuthal angle (rad)

g direction cosine along the /-axis

j optical thickness ð¼ a0r0cÞ
l direction cosine along the r-axis

l 0 viscosity (Pas)

m 0 kinematic viscosity (m2 s�1)

q0
0 density (kgm�3)

q reflectivity

r 0 Stefan–Boltzman constant (Wm�2 K4)

s transmissivity

w stream function

n direction cosine along the z-axis

X 0 crystal rotation rate (s�1)

x solid angle

Superscripts

H height

in inside of boundary surface

m discrete direction of solid angle

OD outer diameter

out outside of boundary surface

T thickness
0 dimensional value

Subscripts

b blackbody

c crucible

h after heater

j material or surface j

jg pointing from material j to gas phase

k material or surface k

l melt

ls pointing from melt to crystal

max maximum value

min minimum value

s crystal

sg pointing from crystal to gas phase

z z-direction
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to solve the radiative transfer equation, the melt and/or

crystal with a relatively thick optical thickness were tar-

geted. However, oxide crystals have a wide range of

absorption coefficient values, and depending on their

values the contributions of radiation to heat transfer
and consequently the melt/crystal interface shape vary,

such as in Cockayne et al.�s experimental work [1].

The aim of the present work is to improve the global

model used in previous works [8,9] by introducing the fi-

nite volume method (FVM) to solve the radiative trans-
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fer equation, so that the radiative heat transfer in the

crystals with a wide range of optical thickness values

can be accounted for. Then, using this new laboratory-

made global analysis code, the effect of optical thickness

of the crystal which is relatively thin on the CZ crystal

growth process, e.g., the melt/crystal interface shape, is

investigated numerically.
2. Mathematical model

Fig. 1 shows an inductively heated CZ furnace for an

oxide single crystal growth, which was taken as an object

to develop a global heat transfer model in the present

work. Here, a pulling rod usually connected with the

crystal through the seed was ignored, and also the shape

of the crystal top surface was simplified, i.e., a flat shape

without a shoulder. The ac electric current in the coil in-

duces the eddy current in the metal crucible wall, and

consequently, the raw material of the crystal inside the

crucible is melted by the Joule heating from the eddy

current. Therefore, in the global analysis of heat transfer

in the inductively heated CZ furnace, the electromag-

netic field in the system should be computed first in

order to obtain the distributions of the eddy current,

i.e., heat power in the crucible and the after heater; then

flow and temperature fields in the furnace as well as the

shapes of the melt/crystal and melt/gas interfaces are

calculated.

In our previous works, we developed a mathematical

model with which we can predict the electromagnetic,
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Fig. 1. Schematic diagram of the inductively heated CZ

furnace.
flow and temperature fields in the furnace and the inter-

face shapes [10], and subsequently extended the model

by incorporating the P1 method to account for the inter-

nal radiation within the crystal and/or the melt [8]. How-

ever, since the P1 approximation is not very well adapted

for optically thin materials, the optical thickness of the

crystal and/or melt was limited to values greater than

1. In the present work, the P1 method was replaced with

the FVM to solve the radiative transfer equation, so that

even the crystal with a relatively thin optical thickness

can be accounted for. For brevity, mathematical details

of the global heat transfer model of the CZ furnace are

not included here, but are available in our previous work

[8,10]. However, the governing equations for the radia-

tive heat transfer which are based on the FVM are de-

scribed below.

Under the assumptions that the system is axisymmet-

ric and in the quasi-steady state, the dimensionless en-

ergy equations are given as follows,

Melt : Prvl � rT l ¼ r2T l; ð1Þ

Crystal : Peez � rT s

¼ Ksr2T s þ jsNRðJ s � 4n2
sT

4
s Þ; ð2Þ

Crucible and after heater : Kjr2T j þ aQ0 ¼ 0

ðj ¼ c; hÞ; ð3Þ

Elsewhere : Kjr2T j ¼ 0; ð4Þ

where T is temperature and v is the velocity vector gov-

erned by the momentum equation. Pr, Pe and Kj are the

Prandtl number, Peclet number and thermal conductiv-

ity ratios to that of the melt, defined by

l0
lC

0
pl=k

0
l; q

0
0sC

0
psV

0
sr

0
c=k

0
l and k0j=k

0
l, respectively. Q0 is the

dimensionless heat generation rate by the Joule heat in

the crucible and after heater for a reference value of

the electric current in the RF coil, and is obtained

from the analysis of the electromagnetic field in the fur-

nace. a in Eq. (3) is determined to be a part of the solu-

tion so that the temperature at the tri-junction may be

the melting point, on the basis of the fact that the local

heat generation rate is proportional to the square of the

current density in the coil. The subscripts ‘‘l, s, c, and h’’

in the above equations indicate the melt, crystal, crucible

and after heater, respectively.

In Eq. (2), the second term on the right-hand side

represents the contribution of the radiative heat transfer,

in which js and NR are the optical thickness of the crys-

tal and the radiation–conduction interaction parameter

defined by a0sr
0
c and r0T 03

mr
0
c=k

0
l, respectively. In the present

work, the optical absorption coefficient of crystal a0s is

independent of the wavelength since we are considering

the radiative heat transfer in gray absorbing–emitting

media, and the melt is assumed to be opaque. ns is the

refractive index of the crystal and does not depend on
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temperature. J is the irradiance defined by the zeroth-

order moment of radiant intensity I, i.e.,

J ¼
Z

x¼4p
I dx: ð5Þ

The radiant intensity I is governed by the equation of

transfer which represents the radiative heat transfer in

an absorbing–emitting, nonscattering crystal. Here, to

solve the radiative transfer equation, the FVM was used

[11], where the 4p angular domain at any spatial location

is divided into a finite number of discrete, M, nonover-

lapping solid angles by the azimuthal discretization

strategy. According to [11], the FVM is the same as

the discrete ordinates method (DOM), except that the

azimuthal discretization was used as the angular discre-

tization strategy instead of the Sn-type one in the DOM.

With the discretization of the angular domains, the radi-

ative transfer equation along a specified discrete direc-

tion xm can be expressed as follows,

lm

r
oðrImÞ
or

� 1

r
oðgmImÞ

o/
þ nm oI

m

oz
¼ �jsIm þ jsIb: ð6Þ

Here, lm, gm and nm are the direction cosines along the

cylindrical coordinates, and / is the azimuthal angle

measured from the r-direction. Ib is the blackbody radi-

ant intensity at the temperature of the medium.

The boundary conditions for Eqs. (1),(2),(3),(4) and

(6) are given by the following equations.

At the melt/crystal interface

T l ¼ T s ¼ 1; ð7aÞ

�rT l � nls þ KsrT s � nls ¼ �PeStðez � nlsÞ

þ NR

XM
m0

Im
0
Dm0

xm0
; ð7bÞ

Im ¼ n2
s elsT 4

s þ qls

XM
Dm0>0

Im
0
Dm0

xm0 ðDm < 0Þ: ð7cÞ

At the crystal surface

rT s � nsg ¼ 0; ð7dÞ

Im ¼ sout
sg qout

i;s þ qin
sg

XM
Dm0>0

Im
0
Dm0

xm0 ðDm < 0Þ: ð7eÞ

At the material surfaces adjoining the surrounding

gas

�KjrT j � njg ¼ eout
jg NRðT 4

j � qout
i;j Þ: ð7fÞ

At the interfaces between opaque materials

KjrT j � njk ¼ KkrT k � njk : ð7gÞ

Here, St is the Stefan number defined by

DH 0
f =C

0
psT

0
m. In the CZ crystal growth system, each

material constituting the furnace, such as the melt, the
crystal and the crucible, is surrounded by a transparent

gas, and the incident radiative heat flux to their surfaces

through the ambient gas, i.e., irradiation qout
i , is partially

absorbed and reflected when the material is opaque. In

the case of the semitransparent material, moreover, a

part of the irradiation transmits inside the material.

Thus, the boundary conditions for temperature and

radiant intensity, Eqs. (7e) and (7f), include qout
i . The

superscripts ‘‘out’’ and ‘‘in’’ refer to the outside and

inside of the surface adjoining the surrounding gas,

respectively, and the subscript ‘‘i’’ of qout
i implies the

incident flux. In the present work, the melt/crystal inter-

face and the crystal surface bounding the semitranspar-

ent crystal were assumed to be gray and to reflect

diffusely.

To solve the governing equations with the boundary

conditions, qout
i should be given explicitly. Here, simi-

larly to the previous work using the P1 method [8], we

first considered the gas phase in the CZ furnace shown

in Fig. 1 as the enclosure surrounded by N opaque

and semitransparent diffuse-gray surfaces of uniform

temperature. Then, the irradiation onto a surface j,

qout
i;j , is given by the following equation, creating an en-

ergy balance with respect to the surface j in the

enclosure,

qout
i;j ¼ 1

1 � qout
j

ðeout
j T 4

j þ sin
j q

in
i;j � qjÞ; ð8Þ

where qin
i is the incident radiative heat flux on the inside

of a semitransparent surface j, i.e., the crystal surface,

and is expressed as

qin
i;j ¼

X
Dm0>0

Im
0
Dm0

xm0
: ð9Þ

In addition, the net radiative heat flux at surface j, qj
in Eq. (8), is obtained as a solution of the following ma-

trix equations which govern radiative heat transfer in the

enclosure:

1

1 � qout
j

 !
qj �

XN
k¼1

qout
k

1 � qout
k

F jkqk

¼ 1

1 � qout
j

ðeout
j T 4

j þ sin
j q

in
i;jÞ

�
XN
k¼1

1

1 � qout
k

F jkðeout
k T 4

k þ sin
k q

in
i;kÞ

ðj ¼ 1; 2; . . . ; NÞ; ð10Þ

where Fjk is the view factor which is calculated efficiently

by combining the analytical solutions [10]. If the mate-

rial with surface j is opaque, the transmissivity sj in

Eqs. (8) and (10) is set to be zero, while the emissivity

ej is neglected in the case of semitransparent materials.
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The finite element method was used for the calcula-

tions of the temperature field in the furnace and velocity

field in the melt, as well as the shapes of the melt/crystal

and melt/gas interfaces. The calculation domain is dis-

cretized by 7631 isoparametric quadrilateral elements

as shown in Fig. 2, and in each element, velocity vectors

and temperature are approximated with bilinear polyno-

mials and the pressure is considered to be constant.

Also, to solve the radiative transfer equation, the spatial

domain was discretized by the same number of control

volumes as that of the finite elements in the crystal, while

the 4p angular domain was divided into 3072 discrete

solid angles. After the electromagnetic field in the CZ

furnace and Q0 in Eq. (3) are calculated for a reference

value of current in the RF coil and the shape of the

melt/gas interface is obtained, the global analysis is car-

ried out according to the following procedure. (1) Eq.

(10) is solved for the net radiative heat fluxes at the sur-
faces adjoining the ambient gas phase, qj (j = 1,2, . . . ,N),

with Tj and qin
i;j obtained in the previous step, and qout

i;j

is obtained using Eq. (8). (2) Eq. (6) is solved for the radi-

ant intensities in all discrete directions, Im (m=

1,2, . . . ,M), and qin
i;j is re-calculated with Eq. (9). (3)

Steps 1 and 2 are successively iterated until all equations

and boundary conditions for the radiative heat transfer

are satisfied. (4) The temperature and velocity fields in

the furnace, the interface shape and a are simultaneously

solved using qout
i and Im obtained in steps 1 to 3. (5)

Steps 1 to 4 are repeated until all equations and bound-

ary conditions are satisfied.
3. Results and discussion

Before investigating the effect of the radiative heat

transfer within the crystal on the CZ crystal growth
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process, it is important to ascertain the reliability and

accuracy of the present simulation, i.e., the FVM used

here. Therefore, the results of the simulation were com-

pared with the following: (1) the exact solution for

radiative flux along the lateral wall of a 2D axisymmet-

ric triangular toroid, where the medium in the toroid

with cold and black walls is maintained at an emissive

power of unity and is assumed to be absorbing–emit-

ting with a 0 = 1.0m�1 [11] and (2) the exact numerical

solutions of the temperature profile in a gray gas con-

tained between infinite parallel plates, where optical

thickness of the gas is 1.0 and the plates are black at

the dimensionless temperatures 0.5 and 1.0 [12]. Fig.

3(a) shows the calculated radiative wall flux distribu-

tions along the lateral wall of the triangular toroid

using the FVM. Fig. 3(b) shows the calculated 1D tem-

perature distributions in the gas between two black

plates for the different values of the conduction–radia-

tion parameter. The present numerical results were

found to be in good agreement with the results in the

literature.

Next, we consider the heat transfer in an inductively

heated CZ furnace with 6kHz radio-frequency current,

as shown in Fig. 1, where a LiNbO3 single crystal

(22.8mm diameter) is pulled continuously at the rate

of 4mmh�1 from the melt in a Pt crucible

(59.3mmOD · 62.7mmH · 1.1mmT). The physical prop-

erties of LiNbO3 melt and crystal used in the calcula-

tions are identical to those used in our previous work

[8,10]. In the present work, the effect of the absorption

coefficient of the crystal on the heat transfer behavior

in the CZ furnace and the melt/crystal interface shape

is investigated, assuming the optical thickness of the

crystal js as a disposable parameter. In regard to the

optical properties, the transmissivities on both sides of

the semitransparent crystal surface are estimated with

its refractive indices (ns = 2.3) as [13,14]
Fig. 3. (a) Calculated radiative wall flux distributions along the later

distributions in the gas between two black plates.
sout
s ¼ 1 � qout

s

¼ 1

2
� ð3ns þ 1Þðns � 1Þ

6ðns þ 1Þ2
� n2

s ðn2
s � 1Þ2

ðn2
s þ 1Þ3

ln
ns � 1

ns þ 1

� �

þ 2n3
s ðn2

s þ 2ns � 1Þ
ðn2

s þ 1Þðn4
s � 1Þ � 8n4

s ðn4
s þ 1Þ

ðn2
s þ 1Þðn4

s � 1Þ2
lnðnsÞ

ffi 0:80; ð11aÞ

sin
s ¼ 1 � qin

s ¼ sout
s

n2
s

ffi 0:15: ð11bÞ

On the other hand, since the melt is opaque, the emis-

sivity of the melt into the gas phase can be estimated to

be 0.80 using Eq. (11a) for eout
l ð¼ 1 � qout

l Þ, and also the

emissivity into the crystal is 1.0 if nl is assumed to be

equal to ns. The Prandtl number Pr and the Grashof

number Gr ð¼ b0T 0
mg

0r03c =m
02
1 Þ in this system are 13.6

and 4.67 · 105, respectively.

Fig. 4 shows the effect of the optical thickness js on

the temperature distributions in the furnace and the flow

pattern in the melt for crystal rotational Reynolds num-

ber, Re ð¼ r02c X0=m0lÞ ¼ 200. The stream functions in the

figures are scaled with rcm0l. The figures show that

the temperature gradients in the crystal decrease when

the optical thickness decreases, because the contribution

of the radiation to the total heat transfer through the

crystal increases and the role of the thermal conduction

diminishes. The larger heat flux due to the radiation

through the crystal brings about the larger heat flux to

the melt/crystal interface from the melt to compensate

for it. Consequently, the power of the RF coil becomes

large, the maximum value of the melt temperature be-

comes higher, and the melt/crystal interface increases

its area and becomes more convex toward the melt.

Fig. 5 shows the effect of Re on the temperature dis-

tributions in the furnace and the flow pattern in the melt

for js = 0.1. When the crystal is not rotated, i.e., Re = 0,
al wall of the triangular toroid. (b) Calculated 1D temperature



Fig. 4. Effect of the optical thickness on the temperature distributions in the furnace and the flow pattern in the melt for Re = 200,

where DT = 0.01 and Dw = 0.2.

Fig. 5. Effect of Re on the temperature distributions in the furnace and the flow pattern in the melt for js = 0.1, where DT = 0.01 and

Dw = 0.2.
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only the clockwise vortex caused by free convection is

present in the melt, and the flow pattern exhibits an

undulating structure at the bottom of the crucible due

to a retarding force caused by the vertical stratification

of the melt. At Re = 400, a counterclockwise vortex

due to crystal rotation appears under the crystal, in
addition to free convection, and the melt/crystal inter-

face is almost flat. Moreover, when the crystal rotation

rate increases, i.e., Re = 600, the intensity of the vortex

due to crystal rotation becomes strong and the melt/

crystal interface becomes concave toward the melt.

From the results, it is found that a melt convection



Fig. 6. Effect of the crystal rotational Reynolds number on the melt/crystal interface shapes.
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affects the temperature distributions in the melt and

crystal and consequently the melt/crystal interface shape

because the Prandtl number of the oxide melt is rela-

tively large (>1).

Fig. 6(a) and (b) show the effect of the crystal rota-

tional Reynolds number Re on the melt/crystal interface

shapes for the different values of optical thickness of the

crystal. In these figures, Dzjr=0 in (a) represents the axial

displacement of the interface at the centerline from the

axial position of the melt/crystal/gas tri-junction

(r = rs), and Dzjr=0.5rs
in (b) denotes the axial displace-

ment at the half position of the crystal radius. When

both Dzjr=0 and Dzjr=0.5rs
are negative, the interface

shape is completely convex toward the melt. When

js=10 and 0.1, Dzjr=0 and Dzjr=0.5rs
increase with Re,

and the melt/crystal interface shape changes from con-

vex to a doubly curved or �gull-wing� geometry, and then

becomes completely concave toward the melt as shown

in Fig. 5, where the doubly curved interface corresponds

to the case that satisfies the following relations,

Dzjr=0 < Dzjr=0.5rs
and Dzjr=0.5rs

> 0. Fig. 6 demonstrates

numerically that the interface inversion occurs with the

increase of Re. When Re is relatively small and the inter-

face is convex toward the melt, the magnitude of the

interface deflection Dzjr=0 becomes larger as the optical

thickness of the crystal js decreases, and consequently

Rec shifts to a larger value, where Rec is the critical

Reynolds number defined as Re at which Dzjr=0 becomes

a positive value, i.e., the interface inversion occurs. In

addition, the dependences of Dzjr=0 and Dzjr=0.5rs
on

Re near Rec become more marked, and thus the inter-

face changes more abruptly. These steep increases of

Dzjr=0 and Dzjr=0.5rs
are due to the melt flow toward

the melt/crystal interface caused by the crystal rotation.

However, as Re increases beyond Rec, the center of the

vortex of the forced convection by the crystal rotation

moves toward the outside, and the sequential melt flow

directs a radially uniform heat flux to the interface and

thus flattens it. Hence, the difference between Dzjr=0

and Dzjr=0.5rs
for the same Re and their dependences

on Re become smaller.
4. Conclusions

For the single crystal growth of an oxide, the global

analysis of heat transfer in the inductively heated CZ

furnace was carried out in order to investigate the effect

of optical properties of crystal on the CZ crystal growth

process. Here, the P1 method used in previous works

was replaced with the FVM to solve the radiative trans-

fer equation, so that even the crystal with a relatively

thin optical thickness could be accounted for. As a re-

sult, it was found that the melt/crystal interface becomes

more convex toward the melt for a small rotational

Reynolds number as the optical thickness decreases. In

addition, the critical Reynolds number, at which the

interface inversion occurs, decreases with the optical

thickness of the crystal.
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